Efficient autonomous material search method combining <i>ab</i> initio calculations, autoencoder, and multi-objective Bayesian optimization
نویسندگان
چکیده
Autonomous material search systems that combine ab initio calculations and Bayesian optimization are very promising for exploring huge spaces. Setting up an appropriate space is necessary efficient autonomous search. However, performing the within set using prepared descriptors not sufficient to obtain search, which can be achieved by prioritizing specific properties. Here, a system autonomously while multi-objective considers similarities among elements emphasizes proposed. This has been used exploration of Heusler alloys. The successfully proposed several candidate materials with half-metallic versatile applied various properties systems.
منابع مشابه
solution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Supplementary Material for: Predictive Entropy Search for Multi-objective Bayesian Optimization
In this section we describe in detail the specific steps of the EP algorithm that is required for the evaluation of the proposed acquisition function, PESMO. More precisely, we show how to compute the EP approximation to the conditional predictive distribution of each objective fk. From the main manuscript we know that that this distribution is obtained by multiplying the GP posteriors by the p...
متن کاملPredictive Entropy Search for Multi-objective Bayesian Optimization with Constraints
This work presents PESMOC, Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints, an information-based strategy for the simultaneous optimization of multiple expensive-to-evaluate black-box functions under the presence of several constraints. PESMOC can hence be used to solve a wide range of optimization problems. Iteratively, PESMOC chooses an input location on w...
متن کاملPredictive Entropy Search for Multi-objective Bayesian Optimization
We present PESMO, a Bayesian method for identifying the Pareto set of multi-objective optimization problems, when the functions are expensive to evaluate. The central idea of PESMO is to choose evaluation points so as to maximally reduce the entropy of the posterior distribution over the Pareto set. Critically, the PESMO multi-objective acquisition function can be decomposed as a sum of objecti...
متن کاملA multi-objective optimization method based on simplex search method
In this paper, a method based on Nelder and Mead’s simplex search method, is developed for solving multi-objective optimization problems. Unlike other multi-objective optimization algorithms based on classical methods, this method does not require any a priori knowledge about the problem. Moreover, it does not need any pre-defined weights or additional constraints as it works without scalarizin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science and Technology of Advanced Materials: Methods
سال: 2022
ISSN: ['2766-0400']
DOI: https://doi.org/10.1080/27660400.2022.2123263